inorganic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Hexagonal ammonium zinc phosphate, (NH₄)ZnPO₄, at 10 K

William T. A. Harrison,^a* Alexandre N. Sobolev^b and Mark L. F. Phillips^c

^aDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, ^bDepartment of Chemistry, University of Western Australia, Nedlands, WA 6907, Australia, and ^c27468 Hayward Boulevard, Hayward, CA 94542, USA Correspondence e-mail: w.harrison@abdn.ac.uk

Received 18 January 2001 Accepted 13 February 2001

The title compound, (NH₄)ZnPO₄–HEX, is built up from a three-dimensional network of ZnO₄ and PO₄ tetrahedra $[d_{av}(Zn-O) = 1.9400 (7) \text{ Å} and d_{av}(P-O) = 1.5396 (7) \text{ Å}]$, fused together *via* Zn–O–P links $[\theta_{av} = 133.47 (4)^{\circ}]$. An undisordered linear Zn–O–P bond occurs (all three atoms lie on a threefold axis). Extra-framework NH₄⁺ cations, which interact with the [ZnPO₄]⁻ framework by hydrogen bonds, complete the crystal structure.

Comment

MZnPO₄ phases (*M* is a univalent cation) built up from a three-dimensional framework of vertex-sharing ZnO₄ and PO₄ tetrahedra are of interest for their physical properties (Blum *et al.*, 1986), their phase transition behaviour (Kahlenberg, 1998; Hammond *et al.*, 1998), and their structural relationship to polymorphs of silica and aluminosilicate zeolites (Harrison, 2000). Here, we describe the lowtemperature (10 K) structure of the hexagonal form (Averbuch-Pouchot & Durif, 1968) of ammonium zinc phosphate, (NH₄)ZnPO₄. We have named this phase (NH₄)ZnPO₄–HEX in order to distinguish it from monoclinic (NH₄)ZnPO₄–ABW (Bu *et al.*, 1997).

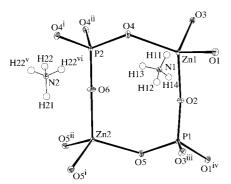


Figure 1


Fragment of the (NH₄)ZnPO₄-HEX structure (50% displacement ellipsoids). [Symmetry codes: (i) 1 - x + y, 1 - x, z; (ii) 1 - y, x - y, z; (iii) 1 + x - y, x, $-\frac{1}{2} + z$; (iv) y, 1 - x + y, $-\frac{1}{2} + z$; (v) -x + y, -x, z; (vi) -y, x - y, z.]

There are 12 framework (two Zn, two P and eight O) and eight extra-framework (two N and six H) atoms in this structure. The geometrical parameters for the ZnO_4 and PO_4 tetrahedra $[d_{av}(Zn-O) = 1.9400 (7) \text{ Å}$ and $d_{av}(P-O) = 1.5396 (7) \text{ Å}]$ are typical (Bu *et al.*, 1997). The linkage of these moieties by Zn-O-P bonds results in a strictly alternating array of Zn and P tetrahedral nodes, with an average Zn-O-P bond angle of 133.47 (4)°, excluding the linear Zn2-O6-P2 bond.

The framework structure of $(NH_4)ZnPO_4$ -HEX is built up from infinite sheets of tetrahedral six-rings arrayed normal to [0001] (Fig. 2). Topologically, this linkage pattern of Zn and P atoms *via* O-atom bridges may be described as layers of simple 6^3 hexagonal nets (Hyde & O'Keeffe, 1996). The fourth Zn-O or P-O vertex points approximately either up (*U*) or down (*D*) with respect to the [0001] direction. Using the up/down classification (Liebau, 1985), two types of six-ring may be identified as *UDUDUD* and *UUUDDD*. In this structure, there are three *UUUDDD* rings for every *UDUDUD* ring in any [0001] sheet.

The extra-framework ammonium cations occupy the [0001] channels and interact with the $[ZnPO_4]^-$ framework by N-H···O hydrogen bonds (Table 2). N1 occupies the *UUUDDD* channels and makes four N-H···O hydrogen bonds to framework oxygen species. N2 occupies the *UDUDUD* channels and makes three equivalent hydrogen bonds as N2-H22···O1. The N2-H21 moiety, which occupies the threefold axis does not participate in any hydrogen bond; all these bonds point the same way in this polar crystal structure. Framework atoms O1-O5 act as hydrogen-bond acceptors, with only O6 not involved in these guest-framework interactions.

(NH₄)ZnPO₄–HEX is isostructural with (NH₄)CoPO₄ (Feng *et al.*, 1997) and α -AgZnPO₄ (Hammond *et al.*, 1998). As noted recently (Hammond *et al.*, 1998; Harrison, 2000), the (NH₄)ZnPO₄–HEX structure is not isostructural with hexagonal nepheline types, such as β -(Na_{3/4}K_{1/4})AlGeO₄

Polyhedral view down [0001] of $(NH_4)ZnPO_4$ -HEX, with selected tetrahedra labelled to show a *UDUDUD* six-ring centred at x = 0, y = 1, and a *UUUDDD* six-ring at $x = \frac{1}{2}$, y = 1. The N1 ammonium cations occupy the *UUUDDD* channels and the N2 ammonium cations occupy the *UDUDUD* channels.

(Hammond & Barbier, 1998), which have the same space group and similar lattice parameters to $(NH_4)ZnPO_4$ -HEX. The nepheline types contain just one topologically distinct sixring (type *UDUDUD*), as adopted by the tridymite form of SiO₂.

A notable feature of the (NH₄)ZnPO₄-HEX structure is the symmetry constrained linear Zn2-O6-P2 bond. At 10 K, there is negligible anisotropy in the thermal motion of O6, which has a ratio of longest-to-shortest ellipsoid axes, *U3/U1*, of 3.11, compared to an average of 2.53 for the other five O atoms. Conversely, in α -AgZnPO₄ (Hammond *et al.*, 1998), the equivalent linear Zn-O-P bond is disordered over three equivalent positions about the threefold axis [resulting Zn-O-P bond angle = 165.8 (4)°]. It was suggested that Ag-O bonding may play a role in promoting this situation, whereas for (NH₄)ZnPO₄-HEX, the linear Zn-O6-P bond is the only one not involved in interactions with the ammonium cation.

Experimental

A mixture of N_2H_4 (2.35 g, 73 mmol), zinc acetate (2.20 g, 10 mmol), 85% H_3PO_4 (4.6 g, 40 mmol) and water (9.08 g, 500 mmol) was placed in a plastic bottle (initial pH = 6.5) and heated to 343 K for 14 d. Numerous bicapped hexagonal rods (maximum size 1 mm) of the title compound were recovered by vacuum filtration and drying in air. Elemental analyses (found: N 7.85, 2.22%; calculated: 7.86, H 2.24%) were consistent with the crystal structure.

Crystal data

 $\begin{array}{l} ({\rm NH_4}){\rm ZnPO_4} \\ M_r = 178.38 \\ {\rm Hexagonal}, P6_3 \\ a = 10.702 \ (2) \ {\rm \AA} \\ c = 8.703 \ (2) \ {\rm \AA} \\ V = 863.2 \ (3) \ {\rm \AA}^3 \\ Z = 8 \\ D_x = 2.745 \ {\rm Mg \ m^{-3}} \end{array}$

Data collection

Huber diffractometer $\theta/2\theta$ scans Absorption correction: analytical (*ABSORB*; Hall *et al.*, 1995) $T_{min} = 0.824$, $T_{max} = 0.952$ 9471 measured reflections 3049 independent reflections 3026 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.013$ $wR(F^2) = 0.031$ S = 1.153049 reflections 109 parameters All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.013P)^2 + 0.062P]$ where $P = (F_o^2 + 2F_c^2)/3$ Mo $K\alpha$ radiation Cell parameters from 20 reflections $\theta = 13.3-13.7^{\circ}$ $\mu = 5.95 \text{ mm}^{-1}$ T = 10 (2) KHexagonal prism, colourless $0.20 \times 0.20 \times 0.20 \text{ mm}$

 $\begin{aligned} R_{\rm int} &= 0.026\\ \theta_{\rm max} &= 37.6^{\circ}\\ h &= 0 \rightarrow 18\\ k &= -18 \rightarrow 15\\ l &= -14 \rightarrow 14\\ 3 \text{ standard reflections}\\ \text{every 97 reflections}\\ \text{intensity decay: none} \end{aligned}$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} = 0.003 \\ \Delta\rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.58 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ SHELXL97} \\ ({\rm Sheldrick, \ 1997}) \\ {\rm Extinction \ coefficient: \ 0.0329 \ (5)} \\ {\rm Absolute \ structure: \ Flack \ (1983)} \\ {\rm Flack \ parameter: \ 0.000 \ (5)} \end{array}$

All H atoms were located from difference maps and their atomic coordinates and isotropic displacement factors were freely refined.

Table 1

Selected geometric parameters (Å, °).

Zn1-O4	1.9399 (7)	P1-O2	1.5398 (7)
Zn1-O1	1.9406 (8)	P1-O3 ⁱⁱⁱ	1.5423 (7)
Zn1-O2	1.9494 (7)	P1-O1 ^{iv}	1.5423 (7)
Zn1-O3	1.9577 (7)	P1-O5	1.5451 (7)
Zn2-O6	1.8953 (12)	P2-O6	1.5081 (13)
Zn2-O5 ⁱ	1.9455 (7)	$P2-O4^{i}$	1.5465 (7)
Zn2-O5 ⁱⁱ	1.9455 (7)	P2-O4	1.5465 (7)
Zn2-O5	1.9455 (7)	P2-O4 ⁱⁱ	1.5465 (7)
$P1^{v}-O1-Zn1$	131.77 (4)	P2-O4-Zn1	130.37 (4)
P1-O2-Zn1	142.46 (4)	P1-O5-Zn2	129.17 (4)
P1 ^{vi} -O3-Zn1	133.60 (4)	P2-O6-Zn2	180.0

Symmetry codes: (i) 1 - x + y, 1 - x, z; (ii) 1 - y, x - y, z; (iii) $1 + x - y, x, z - \frac{1}{2}$; (iv) $y, 1 - x + y, z - \frac{1}{2}$; (v) $1 + x - y, x, \frac{1}{2} + z$; (vi) $y, 1 - x + y, \frac{1}{2} + z$.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H11\cdots O5^i$	0.83 (3)	1.97 (2)	2.7843 (13)	165 (2)
$N1 - H12 \cdots O4^{ii}$	0.84(3)	1.98 (3)	2.8018 (14)	169 (3)
$N1 - H13 \cdots O2^{iii}$	0.864(17)	2.070 (17)	2.8553 (12)	150.7 (19)
$N1 - H14 \cdots O3^{iv}$	0.89 (2)	1.90 (2)	2.7702 (14)	166 (2)
$N2-H22\cdots O1^{iii}$	0.85 (2)	2.10(2)	2.8670 (15)	150.3 (17)

Symmetry codes: (i) $x - y, x, \frac{1}{2} + z$; (ii) $1 - x, 1 - y, z - \frac{1}{2}$; (iii) -x + y, 1 - x, z; (iv) $x - y, x, z - \frac{1}{2}$.

Data collection: local routines; cell refinement: local routines; data reduction: local routines; program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1985); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997) and *ATOMS* (Shape Software, 1999); software used to prepare material for publication: *SHELXL*97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1138). Services for accessing these data are described at the back of the journal.

References

- Averbuch-Pouchot, M. T. & Durif, A. (1968). Mater. Res. Bull. 3, 719-722. Blum, D., Durif, A. & Averbuch-Pouchot, M. T. (1986). Ferroelectrics, 69, 283-292 Bu, X., Feng, P., Gier, T. E. & Stucky, G. D. (1997). Zeolites, 19, 200-208. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Feng, P., Bu, X., Tolbert, S. H. & Stucky, G. D. (1997). J. Am. Chem. Soc. 119, 2497-2504. Flack, H. D. (1983). Acta Cryst. A39, 876-881. Hall, S. R., King, G. D. S. & Stewart, J. M. (1995). Xtal3.4 User's Manual. University of Western Australia, Australia. Hammond, R., Barbier, J. & Gallardo, C. (1998). J. Solid State Chem. 141, 177-185. Hammond, R. P. & Barbier, J. (1998). Acta Cryst. B54, 211-220. Harrison, W. T. A. (2000). Z. Kristallogr. 215, 288-292. Hyde, B. G. & O'Keeffe, M. (1996). In Crystal Structures: Patterns and Symmetry. Washington: Mineralogical Society of America. Kahlenberg, V. (1998). Z. Kristallogr. 213, 13-18. Liebau, F. (1985). In Structural Chemistry of Silicates. New York: Springer-
- Verlag. Shape Software (1999). ATOMS. Shape Software Inc., 521 Hidden Valley
- Road, Kingsport, TN 37663, USA.
- Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.